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Abstract  Forests have long life cycles of up to
several hundred years and longer. They also have
very different growth rates at different stages of
their life cycles. Therefore the carbon cycle in forest
ecosystems has long time scales, making it neces-
sary to consider forest age in estimating the spatio-
temporal dynamics of carbon sinks in forests. The
focus of this article is to review methods for combi-
ning recent remote sensing data with historical cli-
mate data for estimating the forest carbon source
and sink distribution. Satellite remote sensing pro-
vides useful data for the land surface in recent dec-
ades. The information derived from remote sensing
data can be used for short-term forest growth esti-
mation and for mapping forest stand age for long-
term simulations. For short-term forest growth esti-
mation, remote sensing can provide forest structural
parameters as inputs to process-based models, in-
cluding big-leaf , two-leaf, and multi-layered mod-
els. These models use different strategies to up-
scale from leaf to canopy, and their reliability and
suitability for remote sensing applications will be ex-
amined here. For long-term forest carbon cycle esti-
mation, the spatial distribution of the forest growth
rate (net primary productivity, NPP) modeled u-
sing remote sensing data in recent years is a critical
input . This input can be combined with a forest age
map to simulate the historical variation of NPP under
the influence of climate and atmospheric changes.
Another important component of the forest carbon
cycle is heterotrophic respiration in the soil , which
depends on the sizes of soil carbon pools as well as

climate conditions. Methods for estimating the soil
carbon spatial distribution and its separation into
pools are described. The emphasis is placed on
how to derive the soil carbon pools from NPP esti-
mation in current years with consideration of forest
carbon dynamics associated with stand age varia-
tion and climate and atmospheric changes. The role
of disturbance in the forest carbon cycle and the
effects of forest regrowth after disturbance are also
considered in this review. An example of national
forest carbon budget estimation in Canada is given
at the end. It illustrates the importance of forest
stand age structure in estimating the national forest
carbon budgets and the effects of climate and at-
mospheric changes on the forest carbon cycle.

Key words forest carbon cycle, forest age, dis-
turbance, remote sensing, NBP, NPP, NEP

1 Introduction

With
(GHG) emissions to the atmosphere from fossil

rapid increases in greenhouse gas
fuel consumption, land use change and other hu-
man activities in recent decades, the rate of GHG
buildup in the atmosphere has accelerated in the
past decades. Terrestrial ecosystems play an im-
portant part in the global cycle and have been ab-
sorbing about 2—3 PgC y~! from the atmosphere
in the last three decades ( Houghton, 2007, Sar-
miento et al. , 2009). This sink has been highly
variable in the last 50 years (Canadell et al. , 2007)
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and appears to have been increasing in the last few
decades (Le Quéré et al. , 2009), although the un-
certainties of these sink estimates as the residual of
the global carbon budget are still very large. The
durability of this sink would dictate the rate of CO,
increase in the atmosphere in the near future under
a given greenhouse gas emission scenario and
would cause considerable uncertainties in project-
ing the future CO, atmospheric concentration and
climate change (Cox et al. , 1998; Friedlingstein et
al. , 2006). From the scientific viewpoint, it is
therefore critically important to understand the
carbon cycle in terrestrial ecosystems and to im-
prove our ability to project its future trend (Tans
et al. , 1990; Pataki et al. 2003),

The heterogeneous nature of terrestrial eco-
systems presents a major challenge in our effort to
improve regional and global carbon cycle estima-
tion, Using atmospheric CO,; measurements at
coastal and continental sites, monthly and annual
terrestrial carbon sinks and sources for large areas
of the globe have been inferred through atmospher-
ic inverse modeling (Gurney et al. , 2002; Roden-
beck et al. , 2003; Deng et al. 2007; Stephens et
al., 2007). These “top-down” results still have
considerable uncertainties and don’'t yet show e-
nough spatial details suitable for ground validation
and policy formulation, although the spatial reso-
lution will soon be improved using the forthcoming
CO, column data to be retrieved from satellite
measurements (Crisp and Johnson, 2005; Inoue et
al. , 2006). Reliable carbon fluxes can be measured
with the eddy covariance technique, as used in the
many national and regional flux networks (Baldoc-
chi et al. , 2001). However, these flux measure-
ments only cover a very small fraction of the total
land surface area, Spatial information of the land
surface retrievable from space-borne instruments
can be used effectively for spatially explicit carbon
cycle modeling (Running et al. , 1989; Potter et
al., 1993; Chen et al., 2003b; Goetz et al.,
2005; Ju et al. , 2006) for the purpose of both im-
proving the accuracy of regional carbon budget es-
timation and showing spatial details for ecosystem
management purposes.,

This review article serves the following purpo-
ses: (1) to briefly review basic concepts of the for-
est carbon cycle, (2) to describe methods for re-
trieving surface parameters using satellite data that
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are useful for carbon cycle modeling, (3) to exam-
ine methodologies for process-based modeling of
the forest growth rate using remote sensing in-
puts, (4) to introduce a method for modeling long-
term carbon cycle dynamics (including soil) by
combining short-term remote sensing data with
long-term climate data and to suggest ways to use
flux measurements recent years for validating his-
torical carbon flux calculations, and (5) to consid-
er the role of disturbance in forest carbon cycling.
Examples of forest carbon sink and source distribu-
tions in Canada and China will be shown to demon-
strate some of the modeling principles.

2 Basic Concepts of the Forest Carbon Cycle

The terrestrial carbon cycle involves carbon
uptake from the atmosphere through photosynthe-
sis and carbon release from the soil and vegetation
through respiration and disturbance. Photosynthe-
sis is a process that converts atmospheric CO, in
the gaseous form into carbohydrates in the solid
form. Respiration is a process that returns the CO,
gas to the atmosphere through consuming some of
the carbohydrates in plants and through decompo-
sing dead organic matter in the soil. Disturbance to
an ecosystem can occur due to fires, insects and
timber harvest, causing additional release of car-
bon to the atmosphere. The gross primary produc-
tivity (GPP) quantifies the total photosynthesis
rate per unit land surface area per unit time, usual-
ly expressed in units of gC m~2y~! or tC ha 'y~ !,
and it may be considered as the start of the terres-
trial carbon cycle. The net primary productivity
(NPP) is a measure of net carbon absorption by
vegetation per unit time and space, in the form of
biomass accumulation. It is responsible for both
the increment of total biomass (both aboveground
and belowground) with time plus accumulation of
soil organic matter through the turnover of fine
roots and leaves to soil. In process models, NPP is
taken as the difference between GPP and auto-
trophic respiration (R,), i.e. ,

NPP = GPP —R, ¢y
Autotrophic respiration is required to maintain
plant life. It has two components; maintenance
respiration and growth respiration. Maintenance
respiration is the energy cost in maintaining living
biomass, and the growth respiration is the energy
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cost in constructing new plant tissues. These ener-
gy costs reduce the rate of biomass production
from GPP by about half (Ryan et al. , 1996), but
the reduction rate depends on growth conditions
(Ryan et al. , 1997).

The net ecosystem productivity (NEP) deter-
mines the net exchange of carbon between the land
surface (vegetated or non-vegetated) and the at-
mosphere, excluding the direct carbon release due
to disturbance. It is calculated as the difference be-
tween NPP and heterotrophic respiration (R, ),
Le. ,

NEP = NPP —R, (2)
R, results from the decomposition of dead organic
matter in soils and the litter layer above mineral
soils. By this definition, when NEP>0, the land
surface is a sink, 1. e. , it absorbs more carbon than
it releases to the atmosphere. In micrometeorologi-
cal measurements of carbon fluxes, the term net e-
cosystem exchange (NEE) is often used (Black et
al. , 1996). NEE and NEP have the same absolute
values but opposite signs.

The net biome productivity (NBP) is used to
account for carbon losses due to disturbance at the
biome level (Walker and Steffen, 1997). It is esti-
mated as:

NBP = NEP —D (3
where D is the direct carbon release at the time of
disturbance. It usually has three components;

D = Dg. + Do + Dlog (4)
where Dy s Dige and Dy, are the amounts of car-
bon release due to forest fire, insect-induced mor-
tality, and accelerated turnover and decomposition
of dead organic matter after timber removal, re-
spectively.

NPP is an important component of the terres-
trial carbon cycle. For forests, it can be related to
biomass increment through tree ring analysis
(Thomas et al., 2007). When CO, fluxes are
measured simultaneously above and below the can-
opy, half-hourly NPP values can also be derived
for model validation (Chen et al. , 1999). CO, flux
measurements directly provide NEP data. The flux
data can also be used to derive GPP through adding
the total ecosystem respiration (R,) to the NEP
measured in daytime (Goulden et al. , 1996). The
total ecosystem respiration is the sum of auto-

trophic and heterotrophic respiration.
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3 Remotely Sensed Surface Parameters Use-
ful for Forest Carbon Cycle Modeling

As the land surface is generally heterogene-
ous, airborne and space-borne remote sensing
measurements can provide highly desirable infor-
mation for modeling some of the carbon cycle com-
ponents discussed above. There are a long list of
land surface parameters that are useful for forest
carbon cycle modeling (Chen, 2005), including
leaf area index, clumping index, disturbance, land
cover, biomass, wetland, leaf chlorophyll, leaf ni-
trogen, etc. Methods for retrieving the first three
parameters are briefly reviewed here, and some ex-
amples are also given.

3.1 Leaf Area Index

Leaf area index (LAI) is defined as one half
the total leaf area (all sided) per unit ground sur-
face area (Chen and Black, 1992). This definition
is suitable for both broadleaf and needleleaf forms
and is now broadly accepted (Jonckneere et al.,
2004). Several algorithms have been developed for
global mapping of LAI using data from various
sensors including MODIS (Myneni et al., 2002),
POLDER (Lacaze et al. , 2003), MERIS (Baret et
al., 2006), and VEGETATION and AATSR
(Deng et al. , 2006). Large discrepancies are found
among these global LAI products (Garrigues et
al., 2008). In addition to the differences in sensor
characteristics, these LAI retrieval algorithms also
differ considerably in techniques used to relate re-
flected radiative signals to LAI and in assumptions
made in establishing these relationships. There are
also inconsistencies in LAI definition and in tech-
niques for ground-based LAl measurements used in
the algorithm development. In producing and vali-
dating Canada-wide LAI products, Chen et al.
(2002) proposed a set of LAI measurement proto-
cols as well as validation procedures. Through pre-
vious studies (Chen, 1996, Chen et al., 1997;
Chen et al. , 1999; Chen et al. , 2002; Fernandes
et al. , 2003; Abuelgasim et al. , 2005), consistent
ground-based measurements of LAl were made in
many forest and crop canopies over large geograph-
ical areas, providing a solid foundation for LAI
map validation over Canada. For conifer forests, it
is shown that the reduced simple ratio (RSR)
(Brown et al. , 2000) is most significantly correla-
ted with LAI, where RSR is defined as
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RSR=P—"(1—M) (5)
Pr Pmax ~ Pmin

where p,, p,» and p, are the reflectance in NIR,
red, and shortwave infrared (SWIR) bands, re-
spectively, and pmn and pm. are the minimum and
maximum reflectance in the SWIR band, deter-
mined from 1% cutoff points in the histogram of a
given image. Figures la and 1b show the relation-
ships between LAI and SR and between LAI and
RSR for major cover types, respectively. Com-
pared with SR, i.e. , p./p.» RSR has a large sensi-
tivity to LAI changes through suppression of the
effects of the background greenness and variabili-
ty. RSR differs less for the various cover types at
the same LAI than does SR, giving a clear advan-
tage for applications to mixed pixels, which are the
norm in coarse pixels. RSR are also found to be
better correlated to LAI of boreal forests than oth-
er vegetation indices (Stenberg et al., 2004). In
the LAI algorithm of Deng et al. (2006), RSR is
only used for forest cover types, but SR is used for
other cover types to avoid the error due to the large
influence of irrigation on SWIR reflectance.

The algorithm of Deng et al. (2006) is devel-
oped for global LAI mapping based on a geometric-
optical model (Chen and Leblanc, 1997 and 2001)
calibrated against LAl measurements made in Can-
ada and elsewhere. In this algorithm, the depend-
ence of the reflectance on the solar and satellite
view angles, i. e. bi-directional reflectance distri-
bution function (BRDF), is considered using a
look-up table technique. The LAI retrieval is made
in two steps: (1) to invert the remotely sensed
canopy gap fraction into the effective LAI (L,)
(Chen, 1996), assuming the spatial distribution of
leaves is random, and (2) to convert the effective
L. into LAI (L) using the following equation;

L=L./0 (6)
where 2 is the clumping index characterizing the
deviation of the leaf spatial distribution from the
random case (see Section 3. 2 below). Either cov-
er-type specific 2 values or a global  map can be
used for this conversion. An example of a global
LAI map in the mid-summer produced using this
algorithm is shown in Figure 2. Partial validation

of this map has been made using data from Canada
(Pisek et al., 2007) and North America (Pisek
and Chen, 2007).
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3.2 Clumping Index

When the size of leaves is smaller than the
canopy height, Ross (1981) demonstrated that the
attenuation of radiation in a plant canopy can be
well described by the Beer’s law when the leaf spa-
tial distribution is random. Nilson (1971) modified
the Beer’s law with a leaf dispersion parameter to
consider the case when this distribution is not ran-
dom, The leaf distribution can either be more reg-
ular than random, or more clumped than random.
Natural ecosystems generally have clumped distri-
butions of leaves, such as groupings of leaves in
shrubs and tree crowns, and this dispersion param-
eter is therefore often called the clumping index
(Chen, 1996). Chen and Cihlar (1995) developed
an optical instrument named TRAC (Tracing Radi-
ation and Architecture of Canopies) to measure
this clumping index based on a gap size distribution
theory (Miller and Norman, 1971). Measuring
this clumping index has therefore become an inte-
gral part of LAI measurements, and a large dataset
of clumping index for various ecosystems have been
accumulated. However, as the three-dimensional
canopy structure varies greatly in space, the clum-
ping index also varies greatly, and it is highly de-
sirable to map this index. It was not possible to do
this globally until recently the multi-angle POL-
DER data become available. Chen et al. (2001)
first demonstrated that the magnitude of reflec-
tance variation from the hotspot, where the illumi-
nation and observation directions coincide, to the
darkspot, where the reflectance is minimum in the
principle solar plane, is mostly determined by the
degree of foliage organization ( clumping ).
Through geometrical optical simulations using the
4-Scale model (Chen and Leblanc, 1997), they
demonstrate that clumped canopies cast strong
shadows in the forward viewing directions, reduc-
ing the darkspot reflectance, The reduction was
found from data and simulations to be the largest
for conifer, smallest for grassland. They devel-
oped an angular index based on the hotspot and
darkspot reflectance. These model simulations
were later validated using airborne POLDER data
(Lacaze et al., 2002) and space-borne POLDER
data (Chen et al. , 2003a). Through large number
of model simulations (Chen et al. , 2005; Leblanc
et al. , 2005), it is shown that the normalized
difference between hotspot and darkspot (NDHD)
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is most linearly related to the clumping index.
NDHD is defined as:
NDHD = &£ (7
Ok + Pd
where p, and p, are the hotspot and darkspot reflec-
tance, respectively. These modeled relationships
are applied to multiple angle POLDER data for re-
gional and global clumping index mapping (Chen et
al., 2005; and Leblanc et al., 2005). For this
purpose, POLDER data for the same pixel ob-
served at different angles (up to 14 angles during
one single overpass) are fitted with a simple expo-
nential function (Chen and Cihlar, 1997) to find
the most reliable hotspot and darkspot values for a
given set of observations. Using these methodolo-
gies, Chen et al. (2005) for the {irst time produced
a global clumping index map using POLDER I data
at 6 km resolution, and this map is updated here u-
sing POLDER III data (Figure 3). This map is a
multiple angle view of the global land surface,
where forests are most clumped (clumping index
much smaller than unity) and grassland is least
clumped (clumping index close to unity). This
multiple angle view can also tell shrubland from
grassland, not possible in a single view image. In
forested areas, there are large variations in the in-
dex due to forest structural differences and topo-
graphical effects. In mountainous areas, topo-
graphical variations also contribute to the BRDF
variation, causing additional unwanted variation in
the retrieved clumping index. The first order of
this effect has been removed based on the standard
deviation of digital elevation model at 1 km resolu-
tion within each 6 km X 6 km POLDER pixel (Pisek
et al. , 2010). This clumping index map has been
used to convert effective LAl maps derived using
the algorithm of Deng et al. (2006) to true LAI
maps (Chen et al. , 2010).
3.3 Disturbance Detection
Disturbance to forests occurs mostly due to
wildfires, insects and timber harvest. It has pro-
found consequences in forest carbon cycling
through its impacts on biomass, soil organic mat-
ter, stand dynamics, forest renewals and succes-
sion, etc, (Kurz and Apps, 1999). The changes
caused by disturbance can be reliably detected u-
sing remote sensing techniques. After a forest is
burned, for example, green leaf area and the

standing liquid water in foliage and stem biomass
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are drastically reduced, causing the reflectance in
near-infrared (NIR) to decrease and the reflectance
in mid-infrared (MIR) to increase. The ratio of
MIR to NIR reflectance therefore increases dramat-
ically shortly after fire disturbance. Figure 4,
shows the variation of this ratio obtained from
SPOT VEGETATION images in the summer 1998
with time since fire for all burned fire scars across
Canada since 1959 (Amiro et al. , 2002). The cor-
relation is improved when separate regressions are
made for individual ecoregions in Canada, with
r2=0, 57 — 80 for 16 of the 18 ecoregions (Amiro
and Chen, 2002). As the variation in this ratio be-
comes small in about 25 years after fire, fire scar
dating was restricted to 25 years before the ima-
ging date in 1998, with an error of + 7 years.
When images acquired in multiple years are used,
the accuracy in fire scar mapping and dating can be
further improved (Zhang et al. , 2004),

The ratio of MIR and NIR reflectance is used
as a general disturbance index (DI) in our recent
work (He et al. , 2010a) because it also responds
to other disturbance types including insect and har-
vest. For the purpose of refining a {orest stand age
map over conterminous USA compiled using Forest
Inventory and Analysis (FIA) data at the county
level, spatial information of forest disturbance and
its occurrence date would be useful. For this pur-
pose, over 400 pairs of Landsat TM/ETM scenes
acquired circa 1990 and 2000 were used to detect
forest disturbance in the period between 1990 and
2000 (He et al. , 2010a). The data were prepro-
cessed by the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) project
(Masek et al. , 2008), and the spatial resolution of
the original images was reduced from 30 m to 500
m for computation efficiency. The detected dis-
turbances based on the change in DI between 1990
and 2000 were separated into two five-year age
groups according the DI value. FIA data of fores-
ted areas in various forest stand age groups at the
county level were used to set the thresholds for
disturbance detection and for separating the detec-
ted disturbance in two groups, i. e, disturbance be-
tween 1990 and 1995 and between 1996 and 2000.
The results are shown in Figure 5, where the date
of detected disturbance is converted to the stand
age assuming the regrowth of a forest starts in the

second year of the disturbance. The disturbance is
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mostly caused by fire in western states, by insect
in northeastern states, and by harvest in south-

eastern states.

4 Photosynthesis Modeling Methodology

The total photosynthesis in a vegetation
stand, e. g. at the canopy level, is the sum of the
contributions from individual leaves. The biochem-
ical processes that take place inside individual leav-
es during photosynthesis are therefore of funda-
mental importance in our ability to simulate photo-
synthesis at the canopy level., When a photosyn-
thesis model for individual leaves is available, vari-
ous upscaling strategies can be used to estimate the
canopy-level photosynthesis, Remotely sensed veg-
etation structural parameters, i. e. LAI and clum-
ping index, described above are essential for this
upscaling.

4.1 Leaf-level photosynthesis model

Among models of photosynthetic CO, assimi-
lation by plant leaves, the mechanistic model pro-
posed by Farquhar et al. (1980) has been widely
used. The model describes the leaf gross photosyn-
thesis rate at an instant of time for C; plants as the

minimum of;

_ Ci _F
W.=V. CTK (8a)
and
_ C,—_F
W, =17 4.5C; +10.5T (8b)

where W, and W, are Rubisco-limited and light-lim-
ited gross photosynthesis rates in pmol m % s+,
respectively, V, is the maximum carboxylation

¢ s7'; J is the electron transport

rate in pmol m~
rate in ymol m™? s '; C; is the intercellular CO,
concentration; I' is the CO,; compensation point
without dark respiration; K is a function of en-
zyme kinetics. The dimension for C;, I'y K can be
either in Pa or in ppm (parts per million). Pa is
used here. Both I' and K are temperature-depend-
ent parameters. I', derived from Collatz et al.
(1991) and Sellers et al. (1992), can be expressed
as;

[=1.92%107*0, (1, 75)T /0 (9
where O, is the oxygen concentration in the atmos-
phere, being 21 000 Pa, assuming that the atmos-
pheric pressure is 100 000 Pa and O, occupies 21%

of the air by volume. T is the air temperature in

Vol. 18, No. 1, 2010

‘C. K is given by:

K=K {1+0,/K,)) (10)
where K, and K, are Michaelis-Menten constants
for CO, and O, in Pa, respectively., K, = 30 *
2. 1772/ and K, =30 000 % 1. 277%/%° (Collatz
et al. , 1991). V,, can be expressed as a function of
temperature (Collatz et al. , 1991) or a function of
both temperature and leaf nitrogen content (Bo-
nan, 1995) .

Vi = Vs 2. 47770 £(T) f(ND an
where V5 is V,, at 25°C, and is a variable depen-
ding on vegetation type, f(T) and f(N) are tem-
perature and nitrogen limitation terms defined as:

F(T) =(1 + exp((— 2200004 710(T 4 273))/

(R (TH 273007 (12a)

f(N) = N/N,, (12b)
where N is the leaf nitrogen content, and N,, is the
maximum nitrogen content. J is dependent on pho-
tosynthetic photon flux density (PPFD) absorbed
by the leaf (Farquhar and Caemmerer, 1982) and
is given by:

J = J..PPFD/(PPFD+ 2.1 J...0 (13)
where J,..1is the light-saturated rate of electron
transport in the photosynthetic carbon reduction
cycle in leaf cells. According to Wullschleger
(1993), it is related to the Rubisco activity by:

Jowm = 29.14+1.64 %V, 14)
To get net CO, assimilation rate (A), daytime leaf
dark respiration (R,) is subtracted from Eq. 8:

A = min(W,,W,) — R, (15)
According to Collatz et al. (1991),
R; = 0.015V,, (16)

The above instantaneous photosynthesis model at
leaf level defines the photosynthetic processes of
individual leaves with known light illuminance at
an instant of time. In using the above equations to
calculate the photosynthesis rate of a leaf, the val-
ue of C; is unknown, and another physically based
equation is needed as described below.

The net photosynthesis rate can also be de-
scribed in the form (Leuning, 1990; Sellers et al. ,
1996) .

A= (C,—C)g an

where C, is CO,concentration in the atmosphere; g

is the conductance to CO, through the pathway

from the atmosphere outside of leaf boundary layer

in pmol m™? s' Pa™! to the intercellular space, giv-
en by:

g =~ 10% x g, /(R,,, * (T+273)) (18)
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where g, is stomatal conductance; R, is the molar
gas constant, being 8. 3143 m® Pa mol™' K™'. Af-
ter (i) substituting C; in Egs. 8a & 8b with Eq.

14, (ii) combining the results with Eq. 15, and
(iii) choosing the solution of the quadratic equations
with the smaller roots (Leuning, 1990), we obtain:

Ac=%((Ca+K)g+V,,.—R,,— VC,+K)g+V,—R)*—4(V,.(C,——(C.+K)R)g (192)

Aj=%((Ca +2.3Mg+0.2]—R,— /((C,+2.3Mg+0.2] —R,)*—4(0.2J (C,— I —(C,+2.3DR,)g)

where A, and A; correspond to W, and W, respec-
tively, after a small reduction for dark respiration.

4.2 Canopy-level photosynthesis models

In principle, Egs. 19a and 19b could be ap-
plied to every leaf in a canopy in order to sirnulate
the canopy-level photosynthesis rate. However, in
practice there are several ways to use the individual
leaf model for the whole canopy. The principles of
these ways of modeling are described here.

4. 2.1

It is assumed in using a big-leaf model that bi-

Big-leaf model

ochemical processes that are described at the leaf-
level are unchanged at the canopy level, i.e. Egs.
8-19 can all be applied to the canopy treated as one
single “big leaf”. Under the same meteorological
and soil conditions, the big leaf can function differ-
ently according to one single parameter; leaf area
index (L). It is used to define the canopy conduct-
ance (g.):

g.=LXg (20)
This canopy conductance is used to replace the
stomatal conductance g in Eq. 17 to change the
single leaf model to a big-leaf model. To recognize
the fact that not all leaves in the canopy contribute
equally to the total canopy-level photosynthesis,
some big-leaf models (Seller et al., 1992 and
1996) made adjustments to Eq. 20 by weighting
the contributions of leaves at different depths into
the canopy according to the mean radiation gradi-
ent. This adjustment addresses the issue of dimin-
ishing contributions of leaves at the lower levels
because of the exponential decrease of light with
depth into the canopy.

Because of its simplicity and apparent inclu-
sion of biochemical processes, the big-leaf formula-
tion was widely used in early ecological models,
such as Biome-BGC (Hunt and Running, 1992,
Kimball et al. , 1997; Liu et al. , 1997) and SiB2
(Sellers et al. , 1996). However, big-leaf models
have two serious deficiencies (Chen et al. , 1999).
First, the influence of radiation on photosynthesis
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(19b)
is almost non-existent in big-leaf models during the
growing season. Even under overcast conditions,
sky radiation is still nearly sufficient for the big
leaf exposing fully to the incoming radiation, while
in reality, shaded leaves or leaves at the lower lev-
els would have insufficient light for photosynthe-
sis. Mathematically, Eq. 8b for the light-limited
case produces values consistently larger than those
produced by Eq. 8a for the nutrient-limited case,
practically diminishing the radiation control over
the photosynthesis, In reality, the radiation con-
trol operates against shaded leaves in the canopy
most of the time. Second, big-leaf models assume
that photosynthesis takes place in one leaf (or con-
ceptually one layer of leaves), while in reality sev-
eral layers of leaves operate simultaneously. This
assumption dramatically distorts the carbon flow
path, represented as a network of resistances (Fig-
ure 6). In the big-leaf formulation, only one leaf
internal resistance operates against the flow of CO,
from the stomatal cavity (represented by C,) to the
photosynthetic apparatus (represented by the com-
pensation point I'). The use of canopy resistance
rather than the stomatal resistance modifies part of
the pathway to consider the fact that the carbon
flow would meet less resistance through multiple
stomatal openings. This description of the flow
pathway is quite different from the case of multiple
layers of leaves that are operating simultaneously,
where several internal leaf resistances operates in
parallel, as they occur in reality. The big-leaf for-
mulation therefore artificially amplifies the control
of leaf internal resistance on photosynthesis, mak-
ing it less variable under various environmental
conditions as demonstrated by Chen et al. (1999)
using daily NPP data derived from two level CO,
flux measurements. It has been proposed that big-
leaf formulation should be abandoned completely
(Chen et al. , 2003a).

4.2.2 Two-leaf model
To avoid the deficiencies of the big-leaf model
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formulation as described above, the total canopy
photosynthesis (A, ) can be modeled based on
two representative leaves, one sunlit and one sha-
ded (Leuning et al. ,1995; De Pury and Farquhar,
1997; Wang and Leuning, 1998). The photosyn-
thesis rates of these two leaves can be calculated u-
sing the individual leaf model (Egs. 8—19) and
then multiplied by their respective leaf area indices
as proposed by Norman (1982) :

Amnopy = AsunLsn — Asnade Lsbade 2o
where the subscripts “sun” and “shade” denote the
sunlit and shaded components of photosynthesis
and LAIL It is important to note that this two-leaf
formulation is conceptually very different from two
big-leaf models, in which the total photosynthesis
rates for sunlit and shaded leaf strata are calculated
using separate sunlit and shaded canopy conduct-
ances. Two big-leaf models is an improvement over
big-leaf models, but still suffer the same deficien-
cies as big-leaf models as outlined in Section
3.2.1, although to a lesser extent. We therefore
need to differentiate the concepts of “two-leaf mod-
el” and “two big-leaf model”.

The method of Norman (1982) for calculating
LAIL,, and LAI,.. has been modified to consider
the effect of foliage clumping index (£2) on the can-
opy radiation regime (Chen et al. , 1999):

L., = 2cosf(1 —exp(— 0. 50L /cosf)) (22a)

Lywe =L—Lg, (22b)

where L is the leaf area index, and @ is the solar
zenith angle. 0 is 0. 5—0. 7 for conifer forests,
0.7—0. 9 for broadleaf forests, and 0. 9—1. 0 for
" grass and crops (Chen, 1996a; Chen et al.,
1997). The larger 2 departs from unity, the more
non-random is the foliage spatial distribution. It is
critically important to consider this factor in pro-
ductivity models because foliage clumping alters
the way plants interact with incident radiation. In-
creasing foliage clumping (decreasing 2 value) al-
lows more radiation to penetrate through the cano-
py without being intercepted by the foliage and
therefore decreases sunlit LAI and increases shaded
LAIL The clumped architecture of forest canopies
makes the stratification between sunlit and shaded
leaves essential because the fraction of the shaded
leaves is much larger in clumped canopies than in
random canopies and shaded leaves play an impor-
tant role in forest productivity (Guolden et al.,
1997). In a global GPP modeling study using a
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two-leaf model, Chen et al. (2010) found that sha-
ded leaves contribute 61%, 48%, 44%, 29%,
39%, and 42% to the total GPP for broadleaf ev-
ergreen forest, broadleaf deciduous forest, conifer
forest, shrub, C4 vegetation, and other vegeta-
tion, respectively. This result indicates the impor-
tance of modeling shaded leaf photosynthesis.

In the calculation of A,,, and A, in Eq. 21,
the solar irradiances on the representative sunlit
and shaded leaves must be estimated. For remote
sensing applications, Chen et al. (1999) developed
a set of simple equations for estimating these irra-
diances from the global radiation according to LAI,
clumping index, solar zenith angle and mean leaf
inclination angle. These equations also include ra-
diation multiple scattering inside the canopy.

4.2.3 Multi-layer model

The total canopy photosynthesis rate can also
be estimated using multi-layer models, in which
the average photosynthesis rate of a leaf layer can
be estimated using the leaf level model (Eqgs. 8—
19) in the following mathematical formulation
(Bonan, 1995; Foley et al. , 1996);

L
Acnory = D, Ai(g0) (23)
i=1

where A;(g:) is the photosynthesis rate for i layer
of leaves as a function of the average stomatal con-
ductance g; for that layer. This formulation also a-
voids the deficiencies of big-leaf models (section
3.2.1), and it has the advantage of specifying dif-
ferent leaf biophysical parameters for different lay-
ers, such as the specific leaf area (Raulier et al. ,
1999) and the leaf nitrogen content (Leuning et
al. , 1995). In the implementation of this model, it
is critical to calculate the average solar irradiance
on each layer of leaves in order to obtain the repre-
sentative value g;. However, in each layer at a
given time, there are sunlit and shaded leaves op-
erating at very different rates, and which of the
two limitations (light or Rubisco) takes control de-
pends mostly on whether a leaf is sunlit or shaded.
This multilayer formulation is therefore generally
not as effective as the simpler two-leaf model.
However, it can be further improved by separating
the sunlit and shaded leaf groups in each layer (Le-
uning et al. , 1995; Raulier et al. , 1999).

4,3 Stomatal conductance

Plants respond to their environment through
stomatal movement that can be quantified in terms
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of stomatal conductance. In all leaf-level and cano-
py-level photosynthesis models, leaf stomatal con-
ductance to CO, is a critical parameter. Two ap-
proaches are commonly used in estimating the
stomatal conductance and are outlined here,

4.3.1 Jarvis’ Semi-empirical Approach

The Jarvis’ approach is to reduce a species-de-
pendent maximum stomatal conductance by the de-
grees of environmental conditions departing from
the optimum (Jarvis and Morison, 1981; Running
and Coughlan, 1988; Chen et al. , 2005). The en-
vironmental factors usually include photosynthetic
photon flux density (PPFD), temperature (T),
vapor pressure deficit (VPD), and soil water con-
tent (), i.e.

g. =max(gmx * F(PPFD) % f(T) * f(VPD)

% f(Bi) s Ernin) (24)
where the environmental functions are scalars be-
tween 0 and 1, which are formed in the same way
as in BIOME-BGC. These functions are expressed
as:
f(PPFD)=PPFD % PPFD,;/ (1+PPFD » PPFD,)

(25a)

In(T)/In(T,,) T<T,:

D= cos(%(T— Ton) / (Tonge— Tom )) T>T.,

0 T<1
(25b)
1 VPD<VPD,,,
D sor. —VPD
f(VPD)= V‘g;d:e VD VPD ey <VPD<VPD,,,
0 VPD>VPD,.
(25¢)
0 Ow < Oup
f0) = %: — g:p e < e < O
1—0.5x % "0 4 5 <o
8, — 6.

(25d)
The meaning of the symbols in these equations and
their values and units are found in Table 1.
4.3.2 Ball-Berry’s Approach
The recognition of the influence of leaf photo-
synthesis on leaf stomatal opening has lead to an
alternative approach for calculating stomatal con-
ductance. Wong et al. (1979) first reported this
influence and argued that plants would regulate
stomatal opening to keep the intercellular CO, con-
centration nearly constant (at about 70% of the
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free air value for C;plants). Ball (1988), Leuning
(1990), and Collatz et al. (1991) conducted fur-
ther laboratory experiments and developed a model
that mechanistically links stomatal conductance to
leaf net photosynthesis (A,) in the following man-

ner:

— mAnh'x
& C

p+0b, (26)

where g, is expressed in mol m™% s™!, m is a plant
species dependent coefficient, A, is the relative hu-
midity at the leaf surface, p is the atmospheric
pressure, C, is the CO, concentration at the leaf
surface, and b is a small value due to leaf dark res-
piration. This formulation is often called the “Ball-
Berry” model to recognize the first two contribu-
tors to this theory. Collatz et al. (1991) tested the
model and showed good agreement between predic-
ted and measured g, values over a wide range of
leaf temperatures.

The Ball-Berry model revolutionized our un-
derstanding of plant physiology: plants keep sto-
mates open for the need of getting CO, for photo-
synthesis while water loss through stomates is a
passive consequence. This understanding has a
profound implication in modeling the land surface
energy budget: for the estimation of evapotranspi-
ration using the Penman-Monteith equation, the
stomatal conductance to water would depend on

Advanced land

schemes have therefore incorporated photosynthe-

leaf photosynthesis. surface
sis routines for the purpose of estimating stomatal
conductance for water (Sellers et al. , 1996; Dick-
inson et al. , 1998; Cox et al. , 1998; Dai et al.,
2003). However, it is not straightforward to use
the Ball-Barry model for stomatal conductance esti-
mation because A, cannot be estimated without
knowing g,, and an iteration procedure has to be
used to determine A, and g, simultaneously. This
iteration is computationally expensive, and there-
fore the Ball-Barry model has not been used in
many ecological models, especially those developed
for remote sensing applications, such as Biome-
BGC (Kimbal et al. , 1997) and BEPS (Liu et al. ,
2002). Baldocchi et al. (1994) proposed an analyt-
ical solution to g, estimation without computing A,
explicitly. This would help improve the computa-
tion speed for instantaneous leaf photosynthesis,
but the methodology needs to be further developed

for daily or longer time step calculations,
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It should be noted that the Ball-Barry model
contains empirical coefficients m and b, and they
can vary greatly among different plant species or
functional types (Medlyn et al. , 1999a and 1999b.
The model also does not take into account the
effect of soil water stress on stomatal conductance
and needs to be further parameterized. This effect
may be considered by decreasing either the stoma-
tal conductance directly using a soil moisture scalar
(Foley, 1994; Wang and Leuning, 1998; Knorr,
2000) or the photosynthetic rate (Cox et al.,
1998) in response to soil water stress.

S Respiration Modeling Methodology

5.1 Autotrophic respiration

Autotrophic respiration releases CO; back to
the atmosphere by consuming carbohydrates
formed through photosynthesis. Conventionally,
autotrophic respiration (R,) is separated into ma-
intenance respiration (R,,) and growth respiration
(R,) (Amthor, 1989; Running and Coughlan,

1988; Ryan, 1991).
R.=R.+R,= D>, (R..+R,) (@D

where 7 is an index for different plant components,
(1 for leaf, 2 for stem, and 3 for root).
Maintenance respiration is temperature-de-

pendent:

Rm,i — Mirm.i ig‘——Tb)/lo (28)
where M, is biomass (sapwood for stems) of plant
component i; 7, ; is maintenance respiration coeffi-
cient for component i to estimate the respiration
rate at the base temperature at 10°C; Q, is the
temperature sensitivity factor, and T, is the base
temperature, The stem biomass is difficult to ob-
tain for large areas, but the sapwood biomass can
be related to LAI retrievable from optical remote
sensing. Autotrophic respiration is more closely
related to sapwood biomass than the total stem bi-
omass (Lavigne and Ryan, 1997). Growth respira-
tion is generally considered to be not directly de-
pendent of temperature and is proportional to
GPP;

R;,: = rpir...(GPP —R,) (29)
where r,,; is a growth respiration coefficient for
plant component i; and r,,; is the carbon allocation
fraction for plant component i. The recommended
values of these respiration coefficients are given in
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Table 1.

5.2 Heterotrophic Respiration

Heterotrophic' respiration results from mi-
crobes decomposing dead organic matter in the
soil, causing release of CO; to the atmosphere. It
involves complex physical, biological and chemical
processes belowground, and mostly depends on the
quantity of soil organic matter as well as tempera-
ture and soil moisture. While its theoretical tem-
perature dependency (Lloyds and Taylor, 1994)
and empirical moisture response curves (Parton et
al. , 1993) are available, the most difficult task in
its regional estimation is to know the spatial distri-
bution of soil organic matter. The decomposability
of soil organic matter from different biomass
sources (leaves, roots and stems at different
times) is quite different under the same environ-
mental conditions, and it is often necessary to sep-
arate the total soil carbon into several pools, such
as the litter, fine detritus, coarse detritus, fast,
slow, and passive pools. The separation and inter-
action of these pools add to the complexity of het-
erotrophic respiration estimation.

Measurements for the spatial distribution of
the total soil carbon and its separation into the va-
rious pools are not possible for a region. This dis-
tribution has to be estimated under certain assump-
tions. Since soil carbon originates from biomass
turnover to the soil, the total amount of soil car-
bon at a given location is proportional to the long-
term average NPP at the same location. Naturally,
when the total soil carbon becomes stable with
time, the long-term averaged heterotrophic respi-
ration would equal NPP, i. e. the carbon gain
through the net photosynthesis is balanced by the
carbon loss through heterotrophic respiration,
making the surface carbon neutral. This is often
called the dynamic equilibrium of the carbon cycle.

Under this equilibrium assumption, the heter-
otrophic respiration is simply made to equal the
long-term mean NPP., This is an approach widely
used in many models (VEMAP, 1995). If the total
respiration coefficient, i. e. the rate of respiration
per unit soil carbon, is known, the total carbon
pool size can be estimated. Similarly, if the respi-
ration coefficients of the various pools are known,
the sizes of the various pools can also be derived
under the equilibrium assumption. As there are

transfers of carbon among the various pools, a set
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of differential equations need to be solved for this
purpose (Chen et al. , 2003b). The equations con-
tain temperature and moisture dependent respira-
tion coefficients for the different pools, corre-
sponding to the general truth that for the same
NPP, the substrates in colder regions will contain
more carbon than warmer regions. Mathematical-
ly, the respiration coefficient for the i*™ pool (K,)

is calculated as

K. = Koo fr(T) fo (T ) LA (L) » f5(To)]

(30)
where K, .. is the maximum respiration rate coeffi-
cient for the i* pool; T,, P, W and ET are the an-
nual mean soil temperature, precipitation, stored
soil water and evapotranspiration, respectively; L,
is the structural lignin content of surface litter and
in soils; and T, represents the silt and clay frac-
tions of mineral soil. fr, fr, fL and fs are func-
tions of the designated variable in the brackets. In
modeling Canada’s forest carbon sink and source
distribution (Chen et al. , 2003b), L, is estimated
from biomass components using methods and coef-
ficients suggested in the literature (Peng et al.,
1998; Gholz et al., 2000; Trofymow et al.,
1998), and T, is obtained from the GIS database
of Soil Landscapes of Canada ( Shields et al.,
1991; Schut et al. , 1994, see also http://sis. agr.
gc. ca/cansis/references/1994ss _ a. html). The
P+W

ET

trophic respiration for changes in soil water regime

function f (

) is an adjustment of hetero-

(Parton et al. , 1993) to evaluate the influence of soil
moisture, lignin content and soil texture on organic
carbon decomposition rates of the various pools. This
adjustment is important for low-lying areas where P is
consistently much larger than ET. Under the assump-
tion that decomposition reaches a maximum at 35°C,

the temperature response function is

AT = e”“‘“(W‘ﬁ) 31
This equation is reliable for the mean annual tem-
perature T, <C35°C, and for tropical regions, it
may be modified.

6 Stand Age as an Important Driver of the
Forest Carbon Cycle

The forest carbon cycle is closely associated
with the forest life cycle, which can last for several
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hundred years. A forest life cycle starts with an in-
itial slow growth after regeneration following dis-
turbance or plantation and reaches the maximum
growth rate at mid ages. This is generally followed
by a gentle decline in growth at old ages. The age,
at which a forest stand reaches the maximum
growth rate, depends on climate and site condi-
tions. In warmer climates and at better site condi-
tions, the maximum rate is reached earlier. While
the growth, i. e. NPP, has large temporal varia-
tions associated with stand age at a given location,
the soil carbon stock accumulated over long periods
of time changes relatively little with age, and the
heterotrophic respiration would also change much
less than NPP. As a result, measured NEP at dif-
ferent forest stand ages shows variation patterns
similar to those of NPP (Law et al. , 2003; Cour-
solle et al. , 2006).

In simulating the carbon cycle associated with
the forest life cycle, the key is to know how NPP
varies with age. Soil carbon pools obtained from
spin-up procedures under the equilibrium assump-
tion (Section 4. 2) would also vary with NPP as o-
ver 50 % of NPP is turned to dead organic matter in
soil each year. There have been many empirical
studies of the variation of aboveground biomass
with age for forestry purposes, but empirical rela-
tionships between NPP (both aboveground and be-
lowground) and age are very few. Forest inventory
data generally include aboveground biomass and
mortality at various stand ages. For the purpose of
forest carbon cycle modeling concerning not only
the accumulation of carbon in biomass but also in
soils, these inventory data need to be converted in-
to the net primary productivity (NPP). There are
four terms in NPP. (1) life biomass accumulation,
(2) mortality of both aboveground and below-
ground biomass; (3) foliage turnover to soil, and
(4) fine root turnover in soil. The last two terms
made up for more than 50% of the total NPP.
While forest inventories often provide reliable esti-
mates of terms (1) and (2), terms (3) and (4) are
most error prone when limited empirical relation-
ships between aboveground biomass and foliage or
fine root are used to estimate them. These esti-
mates are most seriously confounded by unknown
variations of the turnover rates with stand age as
such field information is rare.

In Canada’s forest carbon cycle modeling
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(Chen et al. , 2003b) , NPP-age relationships (Fig-
ure 7) were established from analysis of stand yield
data for black spruce in Ontario (Chen et al.,
2002). Foliage and fine root turnover rates were
estimated using empirical relationships between to-
tal biomass and foliage or fine root biomass. The
largest uncertainty in the NPP-age relationships
derived this way exists at old ages. The derived
NPP-age relationships for boreal forests vary with
site conditions quantified using a site index in
terms of the tree height that can be reached after
50 years of growth. These relationships show a
general temporal pattern of rapid increase in NPP
in early ages, peak growth in mid-ages, and slow
decline in old ages. For application of these rela-
tionships to large areas, a general semi-empirical
mathematical function was developed:

b(% )d —1
N s

age
exp(%)

where coefficient A, b, ¢ and d are dependent on

NPP (age) = A|1+ (32)

the site index. The site index was replaced by the
mean annual air temperature for Canada-wide NBP
modeling (Chen et al. , 2003b).

In our recent study (He et al. , 2010b), the
Forest Inventory and Analysis (FIA) data as com-
piled by Smith et al. (2002) are used to derive
NPP-age relationships for forests in USA. In order
to address the issue of the uncertain foliage and
fine root turnover rates at different stand ages, we
use a leaf area index map in 2000 over USA at 1
km resolution in combination with a forest age map
to derive LAl-age relationships. These relation-
ships are then used to establish the corresponding
foliage turnover-age relationships using species-
specific values for leaf longevity and leaf mass-to-
area ratio. These relationships are also used for es-
timating the fine root turnover rates based on a
large sample of measured ratios of fine root to leaf
turnover rates. In this way, NPP-age relationships
are established for 18 major forest species groups
in 10 ecoregions in conterminous USA (Figure 8).
The temporal variation patterns shown in Figure 8
are similar to those of boreal forests (Figure 7).
However, the patterns are more variable and less
clearly defined. In particular, the decline rate at
old ages is quite different among the 18 species
groups. Some of the curves might have been con-
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siderably influenced by forest management prac-
tices.

In Figure 7, the absolute NPP values are de-
termined by the site index, while in Figure 8, they
represent the mean NPP for the species groups dis-
tributed over large geographical areas. For spatial-
ly explicit carbon cycle modeling, the absolute
NPP value in a given year can be estimated pixel by
pixel using remote sensing and other inputs (Sec-
tion 4), and the historical NPP variation in each
pixel (x,y) can be obtained using the following e-

quation;
Fyep (z,y,age(t))
PP 'Y = s Vol
NPP(x,y,t) = NPP(z,y,t.) Frae (2, 3,200
(33)

where ¢ is the time (year) either before or after the
reference time (t,4), and Fyxp(x,y,age(2)) is the
normalized NPP-age curve for the pixel (x, ),
with values vary between 0 and 1. It is defined as:

Fuep(z,y,age(t))=NPP(x,y,age(t))/ NP Py,

(34)
where NPPy,, is the maximum value in a NPP
curve as shown in Figures 7 and 8. The age of the
forest in a pixel at a given time ¢ is determined by
the forest age in the reference year, age(t,.) and
the difference between ¢ and t,;, assuming that the
increment of forest stand age is one year for each
year. The reference year is the year at which an
NPP map is available for spatially explicit model-
ing, and the map can be obtained through process-
based modeling at hourly or daily time steps using
remote sensing inputs (Section 4). In this way,
the absolute NPP values most accurately deter-
mined in a reference year is combined with a nor-
malized NPP-age curve to construct the historical
variation of the absolute NPP value due to changes
in forest stand age. The normalized curve shape
not only depends on forest species types but also
varies with site conditions.

7 Time Scale of the Carbon Cycle and Its
Implications on Carbon Modeling

Different ecosystems have different carbon
residence times, with northern ecosystems having
much longer carbon residence times than those of
tropical and temperate ecosystems (Thompson et
al. , 1996). The residence time () is taking as the
ratio of the total carbon (C) in the ecosystem, in-
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cluding soil and-biomass, to the new carbon flux

into the system, i.e.

__C_

NPP
For a typical boreal forest with 30 tC/ha in biomass
(Chen et al. , 2003b), 120tC/ha in soil (Tarnocai,
1996), and 3 tC/(ha y) of NPP (Liu et al.,
2002), the residence time would be 50 years.
While for a typical tropical forest with 100 tC/ha in
biomass ( Neeff et al., 2005), 50 tC/ha in soil
(Batjes and Dijkshoon, 1999), and 10 tC/(ha y) of
NPP (Krinner et al., 2005), the residence time

would be 15 years. As latitude increases, tempera-

(35)

T

ture decreases and the carbon residence time in eco-
systems increases.

These long carbon residence times, as com-
pared with short water residence times (several
weeks), have profound implications on carbon cy-
cle modeling: (i) any model that simulates the net
ecosystem productivity for periods shorter than one
residence time is incomplete at the best, and in this
case the total soil carbon or its decomposition coef-
ficient is often arbitrarily assigned; (ii) any model
that does not separate the total carbon into several
pools of different residence times would also be in
error as the fractions of the different pools would
change with time, especially after disturbance; and
(iii) as old soil carbon (in the slow and passive
pools) that is accumulated over a long period of
time (thousands of years) is still slowly decompo-
sing, a spin-up procedure is needed to estimate the
amount of old carbon. This spin-up procedure is
often dubbed “model warm-up”, and is done either
through running the model for a given pixel for 5—
20 thousand years (which is time consuming in
computation) (Liu et al. , 2005) or by solving a set
of differential equations under a dynamic equilibri-
um assumption for the pre-industrial period (Chen
et al. , 2003b).

8 Strategies to Reduce Uncertainties in Car-
bon Cycle Estimation

As the carbon balance (NEP) of a forest stand
is the small difference between NPP and R, (Eq. 2)
and the errors in both NPP and R, are considera-
ble, the NEP estimate can be erroneous without u-
sing error constraining strategies. For example,
for spatially explicit modeling (Liu et al. , 2002,
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the error in NPP is estimated to be about 25%.
The error in R, can be even larger due to the diffi-
culty in determining soil carbon pools and their
respiration coefficients under various conditions.
The global terrestrial carbon sink in recent decades
is about 2 GtC/y (Houghton, 2007), while the
global NPP is about 60 GtC/y (VERMAP, 1995),
and therefore the sink is only about 3% of NPP
when averaged over the global land surface. To
model such a small difference based on NPP and R,
with much larger errors, some strategies for reduc-
ing the uncertainty in NEP estimation should be
followed. They are briefly described as fellows.

1. To estimate the soil carbon pools based on
the assumption of a dynamic equilibrium between
NPP and R, in the pre-industrial period (before
1900) (VEMAP, 1995; Chen et al. , 2000). Un-
der this assumption, R, is forced to equal NPP in
the preindustrial period so that the effect of any
systematic error in NPP on NEP is greatly reduced
(Chen et al. , 2000), and the error in R, is forced
to cancel that in NPP for the NEP estimation. Af-
ter the preindustrial period, NEP is allowed to va-
ry according to climate and atmospheric condi-
tions. In this way, the carbon balance estimated
for recent years results from the accumulated
effects of all changes since the pre-industrial peri-
od, and any small effects of climate and atmos-
pheric changes on NEP can be simulated with rea-
sonable accuracy. In spatially explicit modeling,
such an equilibrium assumption is made for each
pixel, and an error often occurs because of the var-
iable disturbance history at different locations.
However, this error would reduce by a factor of
e’*, where ¢ is time since the equilibrium assump-
tion and A is the carbon residence time. If the equi-
librium assumption is made twice the residence
time prior to the present date, i.e. t/A=2, the er-
ror in disequilibrium at the preindustrial period
would reduce by a factor of e =7. 4. Such an error
estimate shows the importance of performing long-
term historical simulations of the forest carbon cy-
cle.

An important step in implementing this strate-
gy is to estimate NPP at the preindustrial period,
as we often have only estimates of current NPP,
Recognizing the issue that NPP may have changed
following the historical climate and atmospheric

changes, the past variation in NPP since the prein-
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dustrial period has to be simulated. An iteration
procedure is often used until the historical simula-
tion of NPP agrees with currently available NPP
estimates (see more explanation in Section 10). As
the historical change in NPP is one of the main rea-
sons for current terrestrial sinks, this implementa-
tion of the error reduction strategy is still sensitive
to model parameterizations for the effects of cli-
mate and atmospheric composition on plant
growth,

2. For forest ecosystems, the historical NPP
variation is not only caused by climate and atmos-
pheric variations, but also by stand age. An addi-
tional strategy is needed to avoid the age effect on
the preindustrial equilibrium assumption. This
strategy involves the use of the concept of equilib-
rium stand age, which is the age at which a forest
stand becomes carbon neutral as it gets older. Dur-
ing one forest life cycle, there are two times at
which the forest carbon cycle is balanced (neu-
tral), one at the early stage when the NPP increa-
ses to an extent that offsets the heterotrophic res-
piration, and the other is at the late stage when the
NPP declines to a level that equals heterotrophic
respiration. The older age is taken as the equilibri-
um age because the NPP at this age better repre-
sents the long-term mean value for a stand. For
managed stands which don’t have significant NPP
decrease at older ages, the age at which the NPP e-
quals the mean NPP over the mean harvest-re-
growth rotation may be taken as the equilibrium
age. As the rate of forest growth depends on cli-
mate and site conditions, the equilibrium age
would vary spatially. In Canada’s forest carbon cy-
cle modeling, the equilibrium age is determined on
the pixel bases through simulating historical NPP
and R, and find the second age when these two are
equal (or within 1% to each other). It is found
that this age is between 80 and 150 years for
Canada’s forests, increasing from south to north.

The equilibrium age concept serves the pur-
pose of a baseline estimate for an “ageless forest”
at a given location (pixel). This baseline is used to
separate disturbance and non-disturbance effects.
With the important preindustrial equilibrium as-
sumption, this ageless baseline provides the best
objective estimates of the soil carbon as we gener-
ally don’t have data for forest age in the preindus-
trial period.
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9 The Influence of Disturbance on the Car-
bon Cycle

Given the large variation of forest NPP with
stand age (Section 6), forest disturbance (fire,
harvest, insect) plays particularly important roles
in forest carbon cycling because it not only causes
direct emission of carbon to the atmosphere but al-
so resets “the forest biological clock” by changing
its age structure. The amount of direct carbon re-
lease to the atmosphere during disturbance depends
on the type and the severity of disturbance. Fire
disturbance typically releases a large amount of
carbon in a short duration during disturbance and
also a small amount of carbon in subsequent years
due to decomposition of dead trees (Stocks, 1991;
Amiro et al. , 2001), while insect disturbance cau-
ses loss of foliage or death of whole trees which
gradually decompose over a long period of time.
Harvest often leaves debris on site which also
gradually decomposes. An accurate forest carbon
cycle model should consider (i) the indirect effect
of disturbance on the forest carbon cycle through
the change in forest age structure; (ii) the direct
carbon release during disturbance; and (iii) the in-
direct carbon release after disturbance due to the
decomposition of the affected biomass. In Canada’s
forest carbon cycle modeling ( Chen et al.,
2003b), a forest age map at 1 km resolution was
used to determine the time of disturbance. Since
there is no sufficient information to differentiate
disturbance types (fire, insect and harvest) at the
pixel level, all disturbances were treated as fire

disturbance. The C emissions were estimated as:
Dﬁu=Bf+O. ZSBW+Ldetf (36)

where B, and B,, are biomass densities of foliage
and woody components, respectively; and L is
the detritus from foliage. As these biomass compo-
nents are modeled pixel by pixel, it is possible to
estimate the carbon release due to disturbance for
each disturbed pixel. However, the effect of sever-
ity of disturbance (Kasischke et al. , 2000) has not
been considered. This coefficient of 0. 25 for the
consumption of woody material is found through
adjustment so that the mean emission per unit

ground area agrees with estimates of Amiro et al.
(2001) and Stocks (1991).
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10 Integration of Short-term Remote Sensing
Data with Historical Climate Data for Long-
term Forest Carbon Cycle Modeling

Satellite remote sensing data allow us to esti-
mate the spatial distribution of NPP in recent years
through the use of retrieved surface parameters in-
cluding land cover, LAI and clumping index. Sat-
ellite data are also useful for detecting disturbance
that affects forest stand age. These short-term
spatially explicit data can be combined with histori-
cal climate data for the needed long-term carbon
cycle modeling.

A forest age map allows us to determine not
only the time of last disturbance for direct carbon
release estimation but also forest regrowth after
disturbance based on a pre-established NPP-age re-
lationship (Section 6). Figure 9 demonstrates how
the forest age information is used for estimating
both disturbance and non-disturbance effects on
NPP and NEP for a conifer forest site at mid-lati-
tude in North America. The real climate data and
site-level measurements are used in this example.
Since this is for the purpose of demonstrating a
concept, the actual site information is not provided
here. Figure 9a shows the normalized NPP-age
curve for this species (based a curve shown in Fig-
ure 8), In 2006, this forest was 56 years old, and
therefore this site was disturbed in 1950 at which
NPP dropped to zero (Figure 9b). Prior to 1950,
the forest was assumed to be at a constant equilib-
rium age because the age at which the forest was
last disturbed is unknown. The “climate + CO, +
N” case in Figure 9b represents the variation of the
NPP with climate and atmospheric conditions when
the forest is assumed to be ageless, where CO, and
N denotes for the effects of atmospheric CO, and
nitrogen deposition on NPP. This variation caused
by climate and atmosphere is superimposed on the
NPP at the equilibrium age, representing the long-
term mean NPP of the site. Starting from 1950,
forest regrowth begins from zero and increases
with time according to the normalized NPP age
curve (Figure 9a) and an actual NPP in the refer-
ence year 2006, using Eqs. 33 and 34. Because of
the historical variation in NPP, the net ecosystem
productivity also has a similar historical variation
pattern (Figure 9c). Before 1950, the NEP value
varies about the neutralilty, but is slightly positive
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because of the overall positive climate and atmos-
pheric effects, The forest is a large source of car-
bon shortly after the disturbance in 1950, and as
the forest grows after disturbance, it becomes car-
bon neutral in about 20 years and a carbon sink fol-
lowing the neutrality. The “age only” case repre-
sents the effect of forest age variation with time,
Before 1950, it is at the equilibrium age and there-
fore shown as a zero flat line, Climate and other
effects are superimposed on this baseline. The
measured annual NEP values from 1999 to 1994 u-
sing the eddy covariance method are shown as a
comparison to the modeled historical NEP values,
This comparison suggests that the measured large
sinks (large positive NEP) are mostly due to the
fact that the forest is at its peak productive age. It
would be very erroneous to interpret these large
sinks as climate and atmospheric effects by igno-
ring the forest growth cycle.

This example of NPP and NEP calculations
shown in Figure 9 also demonstrates how the NPP
value modeled using remote sensing inputs for a re-
cent reference year or a short-term can be used to
constrain the long-term forest carbon cycle model-
ing. In this example, the NPP in the reference year
(2006) is used to calculate the historical NPP vari-
ation retrospectively according to climate, atmos-
pheric CO, and nitrogen deposition as well as forest
age at the reference year and a NPP-age relation-
ship. An iteration procedure is followed to ensure
the forward NPP calculation at the reference year
agrees with the predetermined NPP at the same
year. The NPP value at the beginning of the mod-
eling period (1900 in this case) determined through
this iteration is then used to estimate the soil car-
bon pools based on the dynamic equilibrium as-
sumption. If the stand age is larger than the mod-
eling period (106 years in this case), the equilibri-
um age is not found within the modeling period, so
that the modeling period is moved forward assum-
ing the climate remains the same before 1900. This
combination of the short-term remote sensing-
based NPP modeling (reference year) and the long-
term climate-based modeling can effectively in-
tegrate the long-term effects of climate and atmos-
pheric changes as well as disturbance and re-
growth. However, the underlying assumption of
such long-term modeling is that forest cover types
have not changed over the modeling period. More
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advanced methods need to be developed to consider
the impact of forest successional processes and land

use changes.
11 Examples from Canada

Extensive research was previously done to es-
timate Canada’s forest carbon budgets based on
forest area and age structure data in forest invento-
ries (Kurz and Apps, 1999). In this previous stud-
y» biomass-age relationships were derived from the
inventories compiled over about 100 years regard-
less of possible changes in growth conditions over
the long period, and these relationships were ap-
plied to 48 spatial units over Canada’s landmass.
The use of remote sensing not only greatly im-
proves the spatial resolution (~1km) but also al-
lows estimation of changes in forest growth condi-
tions when the past climate and current vegetation
data are used in process-based modeling (Chen et
al. , 2003b). Figure 10 shows the major remote
sensing parameters used in Canada-wide forest car-
bon cycle modeling as well as the major steps. One
unique aspect of this modeling approach based on
remote sensing is that not only non-disturbance
factors (nitrogen and CO, fertilization effects, cli-
mate variables) are considered, as many process
models do, but also disturbance factors (fire, in-
sect, harvest) are explicitly considered, although
insect and harvest disturbances are treated as fire
disturbance due to lack of spatial data. Of particu-
lar importance in modeling the disturbance effects
is the forest age map in 1998 (Figure 11) created
through combining forest inventory, large fire pol-
ygons, and remote sensing data for dating fire
scars,

The Integrated Terrestrial Ecosystem Carbon
(InTEC) model was used to simulate disturbance
and non-disturbance effects on the forest carbon
cycle using these datasets (Chen et al. , 2000). In-
TEC is a combination of (i) Farghuar’s leaf-level
photosynthesis model (Farqghuar et al. , 1980) ap-
plied to remote sensing pixels through a spatial and
temporal scaling scheme (Chen et al. , 1999), (i)
CENTURY soil biogeochemical model (Parton et
al. , 1993) modified for forest applications (Chen
et al. , 2000); and (iii) an empirical forest re-
growth model depending on air temperature (Chen
et al, , 2003b). Using InTEC with inputs from re-
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mote sensing and other spatial datasets, the carbon
budget of Canada’s forests was calculated at 1 km
resolution in annual time steps. Figure 12 shows
the carbon source and sink distribution in Canada’s
forests averaged over the last 15 years of the simu-
lation (1984—1998). Compared with the forest
age map (Figure 12), it is obvious that NBP is
closely related to forest age. In BC, where most
forests are older than 100 years, forests are near
carbon neutral conditions because the small posi-
tive effects of warming (improved nutrient cycles)
and CQO, fertilization might have just offset the
small decline in growth in aging forests. In prairie
provinces, the overall forests are carbon sources
due to frequent disturbances, and the increase in
regrowth could not compensate for the dramatic in-
crease in disturbance in 1980’s and 1990’s. Eastern
and maritime provinces are generally carbon sinks
because of large areas of productive forests gaining
benefits from increased nitrogen deposition and im-
proved nutrient conditions under warming condi-
tions as well as a small effect of CO, fertilization.
There is also a general gradient of decreasing sink
strength from south to north because of the differ-
ential effects of warming on vegetation and soils.
The decomposition of soil organic matter at higher
latitudes is more sensitive to warming, while forest
growth benefits less from warming at higher lati-
tudes where vegetation is sparse. Critical to model-
ing these spatial patterns are remotely sensed for-
est fire patches and forest density (LAI). Partial
validations of the results of soil and vegetation car-
bon stocks and carbon budgets were initially made
against soil carbon data in Soil Landscape of Cana-
da, aboveground biomass data in forest inventory,
and four flux tower sites (Chen et al. , 2003b) and
were made further by Ju and Chen (1995) and Ju
et al, (2006),

InTEC has also been used for estimating the
carbon source and sink distribution in China’s for-
ests (Wang et al., 2007). The distribution is
closely related to forest age distribution pattern.
The results can be further improved with more de-
tailed forest age information and more reliable
NPP-age relationships for China’s ecosystems. The
current forest age structure in China has profound
influence in the forest carbon budget in the next
100 years (Ju et al. , 2007),
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12 Summary

Satellite remote sensing provides an indispen-
sible source of information to improve our esti-
mates of the highly variable terrestrial carbon cycle
in space and time. With our current computation
capacity using common personal computers, we
can now easily afford spatially explicit, process-
based carbon cycle modeling for large areas. For
this purpose, the following main points are made
through reviewing existing research results;

1. The spatial distribution of the gross prima-
ry productivity (GPP) can be reliably mapped u-
sing satellite data in recent years (in combination
with meteorological and soil data). For accurate
mapping of GPP, sunlit and shaded leaves must be
separated and modeled individually. Big-leaf mod-
els (or its simpler form: light use efficiency mod-
els) are inaccurate and should be abandoned be-
cause these models don’t adequately include the
contributions of shaded leaves which can amount
up to 50% of the total canopy photosynthesis.

2. The full forest carbon cycle involving bio-
mass accumulation in the tree life cycle and soil
carbon accumulation and decomposition has a long
carbon residence time (15—50 years), and accu-
rate modeling for all carbon cycle components re-
quires a modeling length at least twice the carbon
residence time. The spatial distribution of GPP ob-
tained in recent years can be effectively combined
with historical climate and atmospheric data for
long-term carbon cycle modeling. GPP in a recent
reference year can provide a reliable anchor point
for such historical carbon cycle simulation.

3. Forest growth rates differ greatly in differ-
ent stand development stages. Forest stand age is
therefore a critical parameter for forest carbon cy-
cle modeling. It not only provides information for
the timing of the direct carbon emission during the
last disturbance but also resets the clock for a new
forest life cycle (regrowth, peak growth, and slow
decline in growth). As demonstrated in the case
study of Canada’s forests, the regional carbon
source and sink distribution is closely associated

with the spatial distribution of forest stand age.
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LEAF AREA INDEX
(July 01-10, 2003)

Figure2 Anexample of a global leaf area index map in July 1—10 in 2003 derived from VEGETATION data at 1 km
resolution using the algorithm of Deng et al. (2006).

Figure3 Global clumping index map derived from POLDER I1I at 6 km resolution using the normalized dif ference be-
tween hotspot and darkspot (NDHD), updated based on Chen et al. (2005).
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Figure4 The variation of the ratio between shortwave infrared (SWIR) and near infrared (NIR) reflectance with the
time after burn. Note that the large initial decrease in the ratio and the asymptote at about 25 years a fter burn. Better cor-
relations were found by separating them into 18 ecoregions in Canada (Amiro and Chen, 2002).
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Figure 5 Disturbed areas in the periods of 1990—1994 (green) and 1995—2000 (red) detected using Landsat images ac-
quired circa 1990 and 2000 (Heet al., 2010a). The images were preprocessed to 500 m resolution (Masek et al. , 2008).
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Figure 6 Schematic of CO; and H,0 flow paths in a plant canopy. Panel {a) is for the CO, flow, and Panel (b) is for the
H,O flow. In both panels, the right hand side shows a big-leaf model and the left hand side represents the reality. Here, we
only use two layers of leaves to represent the canopy. R.and R, represent stomatal resistances to CO; and H,0, respectively.
R; and R, denote the leaf internal resistance and leaf boundary layer resistance , respectively, From the ways these resistances
are combined , we can infer that the big-leaf model does not represent reality of the CO, flow (from A to B), but it can ap-
proximate well the reality of the H,0 flow { from A to B). Notethat: (1) the influence of R, is normally very small, and
(2) R:is very large and only exists for CO,.
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Table 1 Commonly used parameter values for photosynthesis and respiration in boreal conifer forests

Symbol Unit ~ Meaning Value References
Photosynthesis
ftin mm s ' Maximum CO, conductance 416 Ei:liii;a:;ld( 1C?:)?17g)hlan (1988)
Erin mm s ! Minimum CO; conductance 0.0 Chen et al. (1999)
Nieat % Leaf nitrogen 12 Kimball et al. (1997)
N, % Maximum leaf nitrogen 155 Bonan (1995)
V25 pmol m™* s~ Maximum carboxylation rate at 25°C 33 E:r:;ne: 13.95()1999)
PPFD.. pmol m™* s~ Coefficient in Eq. 28a 0.01 Kimball et al. (1997)
T § G Optimum temp. 25 Kimball et al. (1997)
T 8 Maximum temp. range 40 Kimball et al. (1997)
VPDyyer kPa :Z:I::ta:af ::;nieﬁm or TREE 0.2 Dang et al. (1997)
VPD,. KPa Water vapour deficit at stomatal clo- 5 Dang et al, (1997)
sure
Respiration
Qo — Temperature sensitivity 2.3 Kimball et al. (1997)
Tooileat diz’ Leaf respiration coefficient 0.002 at 20°C | Kimball et al. (1997)
Pl gioid= Stem respiration coefficient 0.001 at 20°C | Kimball et al. (1997)
rin ggid! Coarse root respiration coefficient 0.001 at 20°C | Kimball et al. (1997)
Taxsvocil gg 'd Fine root respiration coefficient 0.002 at 20°C | Kimball et al. (1997)
Te g dn Growth respiration coefficient 0.25 Ryan (1991)
Ty gg id Root growth respiration coefficient 025 Ryan (1991)
Vo st — Root carbon allocation coefficient 0. 40 Running and Coughlan (1988)

Vol. 18, No. 1, 2010

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved.

http://www.cnki.net

53



The variation of NPP with age
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Figure 7 The variation of net primary productivity (NPP) with forest stand age under dif ferent site indices (tree height
in m in 50 years). The data used to derive these relationships are from black spruce stands in Ontario, Canada (Chen et

al., 2002).
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Figure 8 NPP-age relationships for 18 forest species groups in USA, derived from Forest Inventory and Analysis data, a
remotely sensed LAI image and a forest age map.
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Figure9 Anexample of modeling the historical NPP and NEP for a conifer forest site in North America with consideration
of the influences of climate (temperature, precipitation) and atmospheric (CO, concentration and nitrogen deposition) chan-
ges as well as disturbance and regrowth. (a) a normalized NPP-age curve for the forest species, (b) separating the ef fect of
forest stand age on NPP from other factors, and (c) modeled historical variation in NEP in comparison with eddy-covariance
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Figure 10 Several major steps in using remote sensing data for terrestrial carbon cycle simulations. Land cover, leaf area
index and fire scar derived from remote sensing are important input parameters. These parameters contribute dif ferently to
the estimation of net primary productivity (NPP), net ecosystem productivity (NEP) and net biome productivity (NBP). NBP
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Forest stand age distribution
derived from remote sensing, fire polygons and inventory 1998

125°W 110°W 95°W 80°W
Figure 11 Forest stand age distribution in Canada. This map integrates forest inventory data in the last 90 years ( forest age

is separated into 6 classes), large fire polygons since 1959, fire scar in the last 25 years detected using satellite remote sens-
ing data. Forest regrowth is assumed to start in the second year after disturbance.

Carbon Source and Sink Distribution in Canada’s Fores
Net Biome Productivity Average for 1984—1998
150° 135°120°105°90°75° 60° _45°__ 30 10°W

60°N

60°

w
(v

w

0 -0.5-1.0-1.5
t C/ha/v Souree

120° W 105° 00" 75° 65°7
LCC, GRS 1980 (NAD 83) 1:27 000 000 Scale
Kilometres 1000 0 1000

Figure 12 Carbon source and sink {NBP) distribution in Canada’s forest in 1984— 1998, NBP includes the net primary pro-
ductivity (NPP) minus heterotrophic respiration and the direct carbon emission due to disturbance. Due to data limitation, all
disturbance (including fire, insect and harvest) is treated as fire disturbance in this example,
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Figure 1 Relationships between the leaf area index (LAI) and the simple ratio (SR) and between LAI and the reduced sim-
ple ratio (RSR) for all cover types in various locations in Canada , with deciduous forests and crops in Ottawa , deciduous
forests in Ontario (several locations), and conifer forests in other locations (Chen et al., 2002).
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